

FX TYPE: Delay

Based on the Boss® Dm-2™

The Aquababy is nearly identical to the Aquaboy project, but shrunk down to fit in a 1590B enclosure. This is a good project if you want an analog delay in the smallest enclosure possible, or if you just want a new challenge. This project does compromise from its counterpart in that it requires 1/8W resistors and wired pots.

It is possible to include modulation on the Aquababy...if you are a total DIY masochist!

Controls

MIX – The ratio of delay vs. clean signal.

FDBK - The number of delay repeats. Maximum FDBK setting will induce self-oscillation.

Delay – Delay time from slap-back to about 300ms.

Bias – Used to set the proper bias on the input of the MN3005 for it to produce clean delay.

Cancel – Sets the mix of the two delay outputs on the MN3005.

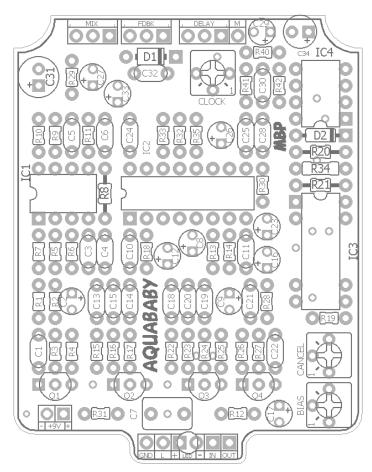
Clock – Sets the correct clock frequency range produced by the MN3101 to drive the BBD delay lines in the MN3005

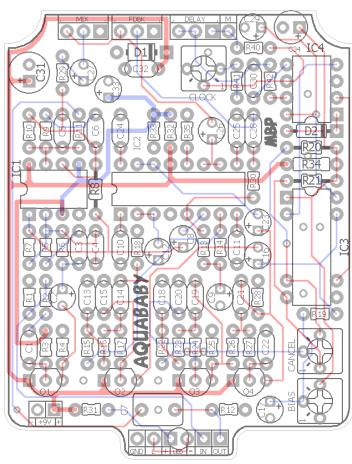
Calibration

Make the following adjustments before beginning:

Mix control at center. Delay at max position. FDBK at about 1/3 up.

BIAS and Cancel trimpots to their center position.


If you have frequency measurement on your DMM, adjust the Clock trimmer to about 6.5kHz while probing either pin2 or pin4 of IC5. If you don't have this feature set the Clock trim half-way up (note: this is when using a 9v supply).


Audio probe pin3 of IC3 while either strumming the guitar or send some audio through the input of the circuit. Adjust the BIAS trimmer until you get delay passing. The range over which the trimmer will result in delay is usually about 1/4 to 1/6 of its entire rotation. Continue refining the position of BIAS until you get the smallest amount of distortion on the delay signal. Now probe pin4 of IC3 to confirm it is also passing delay. If it does not, make sure that you have clock frequency on both pins 2 and 6.

Now finely adjust the CLOCK trimmer until just before you hear any high pitch whine in the audio path. This is the maximum delay setting. The clock frequency should land somewhere between 6 and 7 kHz.

Unless you are using an oscilloscope to calibrate the delay, leave the Cancel trim in the center position.

Layout &Traces

B.O.M.

Resistors		Ca	aps	Diodes		
R1	1M	C1	47n	D1	1N4001	
R2	10k	C2	1uF	D2	1n914	
R3	470k	C3	6n8	Trans	istors	
R4	10k	C4	100pF	Q1	MPSA18	
R5	10k	C5	100pF	Q2	MPSA18	
R6	47k	C6	6n8	Q3	MPSA18	
R7	47k	C7	1uF	Q4	MPSA18	
R8	47k	C8	10uF	I	С	
R9	10k	C9	10uF	IC1	4558	
R10	47k	C10	220n	IC2	NE570	
R11	470R	C11	100pF	IC3	MN3005	
R12	100k	C12	10uF	IC4	MN3101	
R13	10k	C13	6n8	Trim	mers	
R14	10k	C14	82n	BIAS	20k	
R15	10k	C15	330pF	CANCEL	10k	
R16	10k	C16	1uF	CLOCK	1M	
R17	10k	C17	1uF		ots	
R18	10k	C18	2n2	DELAY	1MB	
R19	100k	C19	33n	FDBK	50kB	
R20	100k	C20	1n	MIX	50kB	
R21	100k	C21	39n			
R22	10k	C22	330pF			
R23	10k	C23	1uF			
R24	10k	C24	220n			
R25	10k	C25	100pF			
R26	10k	C26	1uF			
R27	10k	C27	1uF			
R28	10k	C28	100n			
R29	47k	C29	1uF			
R30	22k	C30	100pF			
R31	10k	C31	100uF			
R32	10k	C32	100n			
R33	10k	C33	10uF			
	22R 1/4W	C34				
R34		U34	22uF			
R35	*see notes					
R40	18k					
R41	10k					
R42	22k					

Shopping List

Value	QTY	Type	Rating	
22R	1	Metal / Carbon Film	1/4W	
470R	1	Metal / Carbon Film	1/8W	
10k	21	Metal / Carbon Film	1/8W	
18k	1	Metal / Carbon Film	1/8W	
22k	2	Metal / Carbon Film	1/8W	
47k	5	Metal / Carbon Film	1/8W	
100k	4	Metal / Carbon Film	1/8W	
470k	1	Metal / Carbon Film	1/8W	
1M	1	Metal / Carbon Film	1/8W	
100pF	5	Ceramic / MLCC	25v min	
330pF	2	Ceramic / MLCC	25v min	
1n	1	Film	25v min	
2n2	1	Film	25v min	
6n8	3	Film	25v min	
33n	1	Film	25v min	
39n	1	Film	25v min	
47n	1	Film	25v min	
82n	1	Film	25v min	
100n	2	Film	25v min	
220n	2	Film	25v min	
1uF	1	Film	25v min	
	1uF 7 Electrolytic		25v min	
10uF	4	Electrolytic	25v min	
22uF	1	Electrolytic	25v min	
100uF	1	Electrolytic	25v min	
1N4001	1			
1n914	1			
MPSA18	4	or, other BJT		
4558	1			
NE570	1			
MN3005	1			
MN3101	1			
20k	1	Bourns 3362p		
10k	1	Bourns 3362p		
1M	1	Bourns 3362p		
1MB			16mm	
50kB	2	Solder Lug	16mm	
		- 3		

- You can use either 20k or 25k for the trimmer if you cannot get a 22k.
- You can use either NOS MN3005 (if you have one) or the new Xvive reproduction MN3005. No, I do not know where you can buy genuine NOS MN3005...sorry!
- You can use other BJT like 2n3904 or 2n5088 for the MPSA18. Just mind the pinouts if subbing transistors.
- Using a silver mica or MLCC type cap for C30 (100pF) will produce optimal results (due to tighter tolerance).

Parts Guide

Mini 1uF electrolytic caps (recommended but not absolutely necessary):

https://www.mouser.com/ProductDetail/Lelon/SG010M1HBK-0407P?qs=%2Fha2pyFadug8BwuCWCMjxlcLopjZQ3XC-J7%2FDZotRQwdYDLhCTplE8Q%3D%3D

MPSA18:

http://smallbear-electronics.mybigcommerce.com/transistor-mpsa18/

V571 (sub for NE570):

http://smallbear-electronics.mybigcommerce.com/ic-v571d/

Xvive MN3005:

http://smallbear-electronics.mybigcommerce.com/mn3005-re-makes-xvive-audio/

MN3101 (currently out of stock):

http://smallbear-electronics.mybigcommerce.com/ic-mn3101/

Bourns 3362p 22k:

https://www.mouser.com/ProductDetail/Bourns/3362P-1-223LF?qs=sGAEpiMZZMvygUB3GLcD7v%2F2K2JTtKgbVP-DHLENkzyQ%3D

Bourns 3362p 10k:

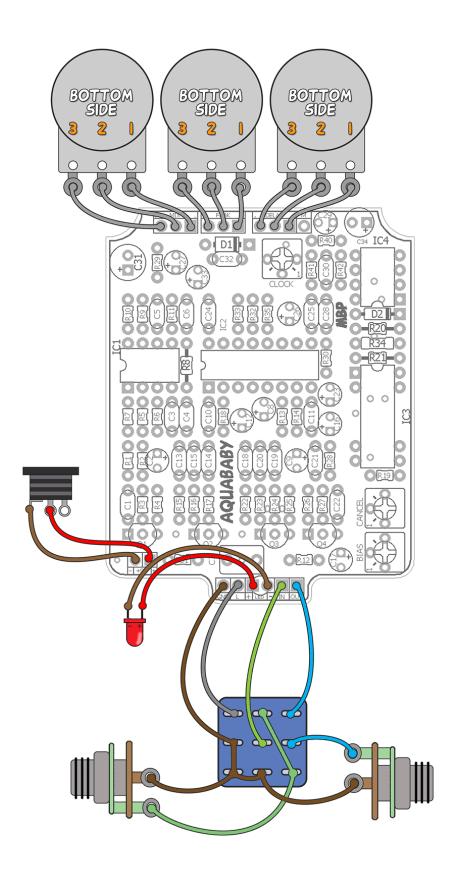
https://www.mouser.com/ProductDetail/Bourns/3362P-1-103LF?qs=sGAEpiMZZMvygUB3GLcD7k%252Bod3ZqvEIQboR-RPdOKB6M%3D

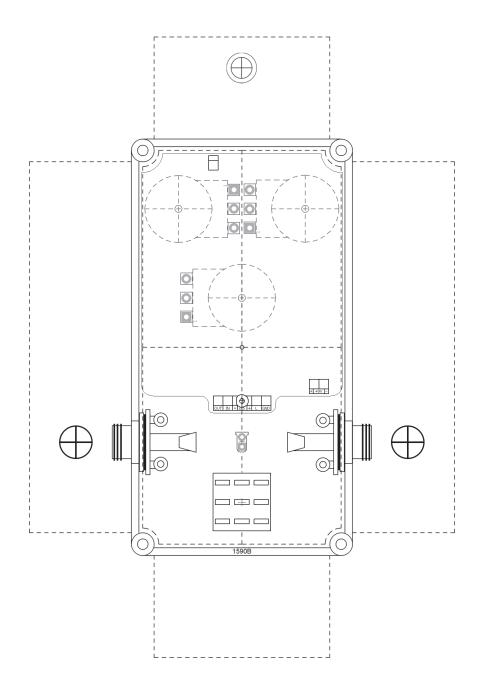
Bourns 3362p 1M:

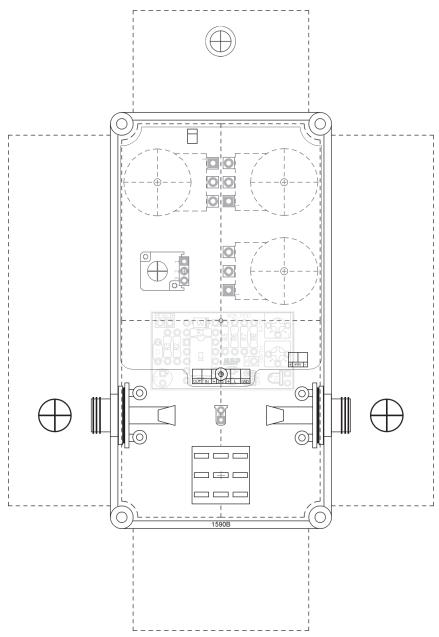
https://www.mouser.com/ProductDetail/Bourns/3362P-1-105LF?qs=sGAEpiMZZMvygUB3GLcD7kddhVJPyV2kST-8Lo8Gl%252B%2F8%3D

16mm Solder Lug pots:

http://smallbear-electronics.mybigcommerce.com/alpha-single-gang-16mm-solder-terms-linear-audio-taper/

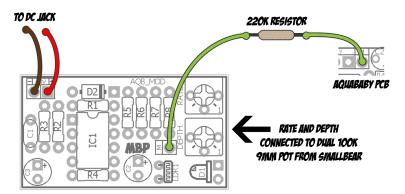

If you want to build the Aquababy with modulation like I did (see my build pic later in this doc) this is the dual pot I used: http://smallbear-electronics.mybigcommerce.com/alpha-dual-gang-9mm-pc-mount-dual-concentric/


Notes


R35 is not used on the DM-2, but some analog delays do use a resistor there. Supposedly it can improve the THD from the compander although I have yet to hear an actual difference (perhaps it's only be detectable on a scope). In any case, if you want to try it yourself, use a 20k resistor for R35. Otherwise just leave it empty.

Like the Aquaboy, you can run the Aquababy at 15v, but it might be very difficult to fit a charge pump in such a small enclosure. If you intend to run the Aquababy at 15v, change R13 and R14 to 36k from 10k.

Wiring

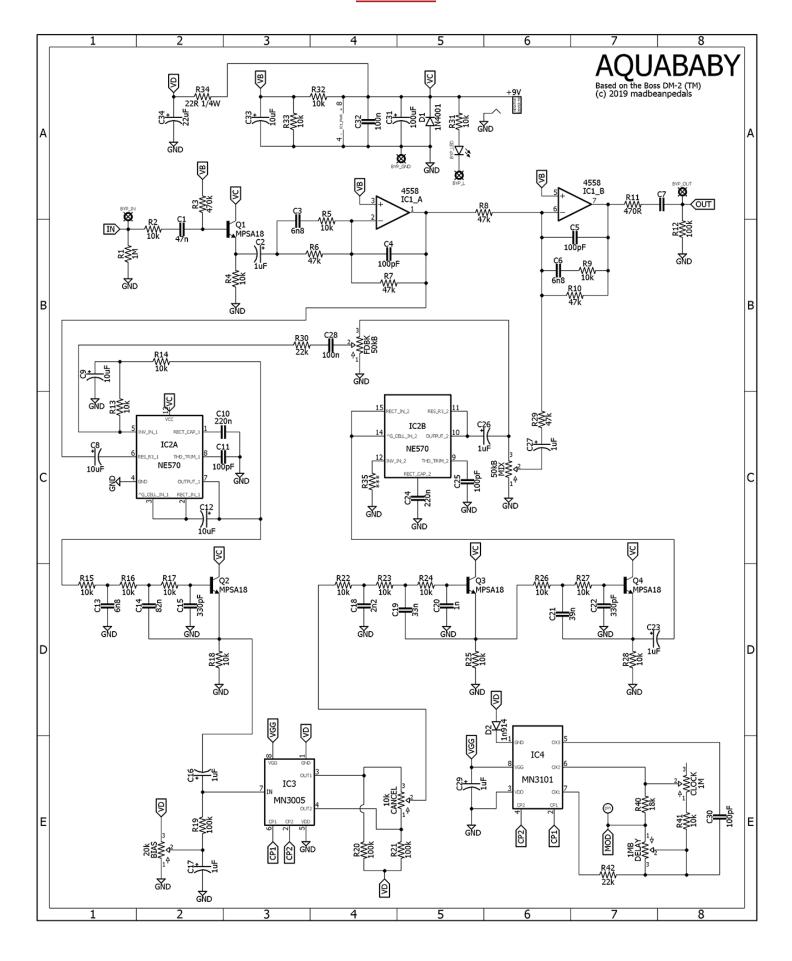


If you are a real glutton for punishment and want to try the dual concentric pots for modulation.

Build Pic

For my prototype build, I went all out and included modulation using an AQB_MOD board. I used one of the 100kB dual concentric pots and knobs from smallbear. Since there was no room for a switch to turn the modulation off, I opted to include a series resistor. This is the wiring I used for the mod board. I did use a 1550B instead of 1590B enclosure, though.

I don't remember the exact value I used for the resistor. It might have been 220k or smaller. The idea is to pick the right value so when the Depth is turned all the way down the modulation is essentially cut-off. To be clear: I do not recommend trying modulation with the Aquababy unless you are really patient and experienced!


Voltages

IC1	4558	IC2	NE571	IC3	MN3005	IC4	MN3101
1	4.7	1	0.92	1	9.37	1	8.76
2	4.7	2	1.84	2	4.39	2	4.39
3	4.7	3	1.84	3	4.69	3	0
4	0	4	0	4	4.68	4	4.39
5	4.7	5	1.84	5	0	5	3.88
6	4.7	6	1.83	6	4.38	6	4.72
7	4.7	7	3.03	7	4.27	7	4.25
8	9.41	8	1.84	8	0.59	8	0.59
		9	1.84				
		10	3.1				
		11	3.1				
		12	1.84				
		13	9.41				
		14	1.84				
		15	1.84				
		16	0.9				

One Spot: 9.42vDC - Current Draw: 13mA Clock Frequency: 6.44kHz at max Delay setting

Clock frequency depends on where the Clock trim is set. IC3 pin7 depends on where the Bias trim is set.

Schematic

