

Last Updated: April 25, 2024 9:19 AM © 2024 madbeanpedals



### **Overview**

From the Jim Dunlop website:

"Released in 1972, the Dyna Comp Compressor featured simple, straightforward controls—labeled Output and Sensitivity—to govern the volume and compression levels, respectively. Inside, it contained the coveted CA3080 metal can integrated circuit, which remains a key component to its sound and vibe.

The original Dyna Comp Compressor was an instant hit, finding its way into the signal chains of monster players such as Lowell George and Bonnie Raitt, who favored it for the sweet sustain it lent to their slide work, and David Gilmour, who liked how the Dyna Comp Compressor could make his single-note lines bloom and soar. Other prominent guitarists who would rely on the Dyna Comp Compressor include Andy Summers—his popping, ringing clean chords are a perfect illustration of the pedal's sonic mojo."

## Controls

- LEVEL: Total effect output.
- **SUS:** Compression amount.
- **BIAS:** This trimmer sets the bias currents to the positive and negative input terminals of the OTA device.

Further study: https://www.electrosmash.com/mxr-dyna-comp-analysis

Terms of Use: You are free to use purchased Ambulator circuit boards for both DIY and small commercial operations. You may not offer Ambulator PCBs for resale or as part of a "kit" in a commercial fashion. Peer to peer re-sale is fine, though.

Technical assistance for is available via the madbeanpedals forum. Please go there rather than emailing me for personal assistance. This is because (1) I'm not always available to respond via email in a timely and continuous manner, and (2) posting technical problems and solutions in the forum creates a record from which other members may benefit.

All copyrights and registered trademarks are property of their original owners. Any mention of trademarked or intellectual properties in this documents is purely for comparative purposes.





Ambulator





# **B.O.M.**

| Resi                                                        | Resistors Caps                                      |                   | Diodes                |            |               |
|-------------------------------------------------------------|-----------------------------------------------------|-------------------|-----------------------|------------|---------------|
| R1                                                          | 1M                                                  | C1                | 10n                   | D1         | 1n914         |
| R2                                                          | 10k                                                 | C2                | 1uF                   | D2         | 1n914         |
| R3                                                          | 1M                                                  | C3                | 10n                   | D3         | 1n5817        |
| R4                                                          | 10k                                                 | C4                | 1uF                   | Trans      | istors        |
| R5                                                          | 1M                                                  | C5                | 1n                    | Q1 - Q5    | 2n3904        |
| R6                                                          | 15k                                                 | C6                | 56n                   | ](         | C             |
| R7                                                          | 1M                                                  | C7                | 10n                   | IC1        | CA3080        |
| R8                                                          | 470k                                                | C8                | 10n                   | Trim       | mers          |
| R9                                                          | 150k                                                | C9                | 10uF                  | BIAS       | 2k            |
|                                                             |                                                     |                   |                       |            |               |
| R10                                                         | 10k                                                 | C10               | 100n                  | Pc         | ots           |
| R10<br>R11                                                  | 10k<br>10k                                          | C10<br>C11        | 100n<br>100uF         | LVL        | 50kA          |
| R10<br>R11<br>R12                                           | 10k<br>10k<br>10k                                   | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13                                    | 10k<br>10k<br>10k<br>1M                             | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13<br>R14                             | 10k<br>10k<br>10k<br>1M<br>1M                       | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13<br>R14<br>R15                      | 10k<br>10k<br>10k<br>1M<br>1M<br>150k               | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13<br>R14<br>R15<br>R16               | 10k<br>10k<br>10k<br>1M<br>1M<br>150k<br>27k        | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13<br>R14<br>R15<br>R16<br>R17        | 10k<br>10k<br>1M<br>1M<br>150k<br>27k<br>56k        | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |
| R10<br>R11<br>R12<br>R13<br>R14<br>R15<br>R16<br>R17<br>R18 | 10k<br>10k<br>1M<br>1M<br>150k<br>27k<br>56k<br>22k | C10<br>C11<br>C12 | 100n<br>100uF<br>10uF | LVL<br>SUS | 50kA<br>500kB |

# **Shopping List**

| Value  | QTY | Туре                | Rating   |
|--------|-----|---------------------|----------|
| 10k    | 5   | Carbon / Metal Film | 1/4W     |
| 15k    | 1   | Carbon / Metal Film | 1/4W     |
| 22k    | 1   | Carbon / Metal Film | 1/4W     |
| 27k    | 1   | Carbon / Metal Film | 1/4W     |
| 56k    | 1   | Carbon / Metal Film | 1/4W     |
| 150k   | 2   | Carbon / Metal Film | 1/4W     |
| 470k   | 1   | Carbon / Metal Film | 1/4W     |
| 1M     | 6   | Carbon / Metal Film | 1/4W     |
| 1n     | 1   | Film                | 16v min. |
| 10n    | 4   | Film                | 16v min. |
| 56n    | 1   | Film                | 16v min. |
| 100n   | 1   | Film                | 16v min. |
| 1uF    | 1   | Film                | 16v min. |
| 1uF    | 1   | Electrolytic        | 16v min. |
| 10uF   | 2   | Electrolytic        | 16v min. |
| 100uF  | 1   | Electrolytic        | 16v min. |
| 1n914  | 2   |                     |          |
| 1n5817 | 1   |                     |          |
| 2n3904 | 5   |                     |          |
| CA3080 | 1   |                     |          |
| 2k     | 1   | Bourns 3362p or 6mm |          |
| 50kA   | 1   | PCB Right Angle     | 16mm     |
| 500kB  | 1   | PCB Right Angle     | 16mm     |
|        |     |                     |          |

#### Additional Hardware

(1) 1590B enclosure
(2) Lumberg 1/4" Compact mono jacks

(1) Slim 2.1mm DC jack
(1) Standard 3PDT footswitch
(1) 5mm LED

## **Build Notes**

- Bias trimmer: start in its center position. To see if it needs adjustment, turn the SUS control all the way up. If you hear any sort of thumping or otherwise strange noise in the compressed signal, adjust the BIAS trimmer slightly to the right or left until it is eliminated. It should be done in very small increments. Most likely the trimmer will be fine left in the center position.
- I highly recommend reading the Dyna Comp analysis article on the Electro Smash website. There are a few mod suggestions in the article, too. Note the different component numberings with the Ambulator if you decide to try any them.

https://www.electrosmash.com/mxr-dyna-comp-analysis

# **Circuit Voltages**

| IC1 | CA3080 | Q3 | 2n3904 |
|-----|--------|----|--------|
| 1   | ~275mV | С  | 9.11   |
| 2   | 4.55   | В  | 16mV   |
| 3   | 4.55   | Е  | 0      |
| 4   | 0      | Q4 | 2n3904 |
| 5   | 0.66   | С  | 9.11   |
| 6   | 2.42   | В  | 7mV    |
| 7   | 9.26   | Е  | 0      |
| 8   | ~19mV  | Q5 | 2n3904 |
| Q1  | 2n3904 | С  | 9.26   |
| С   | 9.26   | В  | 9.09   |
| В   | 1.79   | Е  | 8.64   |
| Е   | 1.27   |    |        |
| Q2  | 2n3904 |    |        |
| С   | 7.44   |    |        |
| В   | 2.42   |    |        |
| E   | 1.83   |    |        |

9.44vDC One Spot supply Current Draw: ~2mA Knobs @ 50%



# **Build Pic**



## **Schematic**



Ambulator