3.175” W x 1.125” H

Resistors Caps Diodes
R1 1k C1 330pF D1 – D4 LED
R2 1M C2 220n D5 9.1v Zener
R3 47k C3 33n IC1 LF347
R4 2k C4 330pF IC2 TC1044SCPA
R5 47R C5 2u2 – –
R6 4k7 C6 470n – –
R7 22k C7 68n BOOST SPDT / DPDT
R8 22k C8 470n HI/CRIU SPDT / DPDT
R9 22k C9 22pF – –
R10 100R C10 100uF CRUNCH 100kB
R11 1k C11 10uF HI-GAIN 1MA
R12 10k C12 10uF TONE 5kB
RPD 2M2 C13 1n5 VOL 5kA

Download previous version of the Boneyard (before 03.2012)
The Boneyard is a highly modified Plexitone™, which is a high-gain distortion modeled after the classic 60's Marshall amps identified by their Plexiglass panels. The stock unit is powered by an on-board transformer running at +/- 12v and features volume, tone, two gain controls, a boost, and three footswitches for a wide variety of tonal options. To simplify the design, the Boneyard eliminates the transformer and instead uses a voltage inverter to power the effect at +/-9v. The Boneyard also eliminates the Boost function and converts the entire circuit to true-bypass. This document will demonstrate several possible configurations for building the Boneyard, including one, two and three footswitch options, different enclosure configurations, and a method to wire in a simplified boost function, if desired.

- **Crunch** - This is the normal gain control.
- **Hi-Gain** - A larger pot increases the total amount of gain.
- **Hi/Cru** - This switches between the Crunch and Hi-Gain modes.
- **Tone** - This is an active tone control.
- **Vol** - A passive volume control before the final output stage.
LED clipping - The stock version uses red, water-clear 5mm LEDs. 3mm diffused red will also work well here. You can build the Boneyard with either symmetrical or asymmetrical clipping. For symmetrical clipping, populate D1-D4. For asymmetrical clipping, populate D1-D3 and jumper the two pads for D4.

RPD – The stock version is non-true bypass. As such, no pull-down resistor is required since the input of the circuit is always connected. The Boneyard is meant to be wired as true-bypass. For this reason, the RPD resistor (resistor pull-down) was added. This is optional and should only be added if you get popping when you toggle the bypass. Either 1M or 2M2 should be sufficient.

Low Pass Filter - The Boneyard also adds an optional low pass filter at the output of the effect. This filter will help tame down some of the shrillness produced by turning the Tone control at maximum. If you do not wish to use this filter, simply omit C13 and jumper R12.

Volume Control - If you do not have a 5kA for the Vol control, use a 10kA and put a 10k resistor across lugs 3&1 of the pot. This will yield approximately 5k.

12vDC Operation - You can use an LT1054 in place of the TC1044SCPA to run the Boneyard at +/-12v with a single 12v power supply adapter (note that the TC1044 should only be used with a 9v supply). If using the LT1054, you must remove or clip out pin1 of your IC socket. Make sure that pin1 of the socket (or IC) does not contact the pin1 pad on the PCB when using an LT1054! Also, be sure to replace D5 with a 12v Zener diode instead of the 9.1v listed in the BOM.

Pots - You can use 16mm short pin PCB mounted pots for this build. These are available from Smallbear. They should be mounted underneath the PCB.

Noise / Oscillation – This is an extremely high-gain circuit. This means it will be prone to noise and oscillation. To reduce this risk, use metal film resistors and keep your wiring tidy and short in the enclosure. Use shielded wire, if possible, on the input / output jacks and the effect IN and OUT. You can also reduce the values of both the Crunch and Hi-Gain pots to deter unwanted feedback. Try subbing 50kB for the Crunch and 500kA for the Hi-Gain pots to reduce oscillation.

Boost - The stock Plexitone™ takes advantage of its non-true bypass setup to utilize the output section as a toggled boost. While the Boneyard has a non-true bypass setup, you can wire in a Boost pot if you like. You will not be able to use the Boost independent of the drive circuit, however. If you want an independent boost, you can always drop a separate circuit into the enclosure. See below for how to implement the boost mod.

DO NOT, and I repeat, DO NOT box this up until you first test it out on your prototyping/testing rig. Even with PCB mounted pots, there is still a lot of wiring that has to be done. There is no point in doing that unless you know for a fact your circuit is working first. Please, take the time to rock it first. Then box it.
This configuration allows you to put the **Boneyard** in a 1590B enclosure. The footswitch is for bypass, and the **Hi/Cru** switch is an SPDT (located in the upper left above the DC jack. Note that the PCB has been turned 180° to move the pots closer to the top of the enclosure. Keep in mind the drawing is top-down, as if you were looking at the enclosure from the outside. This means the order of controls would be the toggle switch, **Hi-Gain**, **Crunch**, **Tone** and then **Vol**.
The second configuration is for a 1590BB, and will be the easiest one to build. For this setup, you have the four standard controls, and the Hi/Cru is wired to a footswitch. In this case the order (looking top-down) is **Vol**, **Tone**, **Crunch** and **Hi-Gain**. The bypass and Hi/Cru switches can be wired on either side depending on your preference.
The third configuration is the most full-featured, and also the most difficult to do. In this set up, the order of controls is **Boost**, **Vol**, **Tone**, **Crunch** and **Hi-Gain**. The three footswitches are **Boost**, **Bypass**, and **Hi/Cru**. You can most likely fit a battery between the input and output jacks, as well.
This diagram demonstrates the basic wiring for all three possible configurations shown above. The Hi/Cru switch is the DPDT on the left, and the bypass switch is on the right.

If you choose the 1590B layout, use an SPDT instead of the DPDT for the Hi/Cru switch and omit the brown ground wire and LED shown on the second row of lugs.

For the 1590BB (A and B) versions, you can also use a 3PDT in place of the DPDT---just leave the third row of lugs empty.
For the 1590BB “B” version, use this modification to enable the Boost feature.

Omit R9 from the PCB and use two 22k resistors as shown. One resistor goes on the switch and is for the bypass. The second 22k goes on the pot. This resistor sets the minimum gain when the Boost pot is all the way down (in this case, it's unity). The Plexitone ™ uses a 500kA pot for the Boost. You can also use smaller values to achieve a wide range of boost without the possibility of oscillation. For that reason, 50kA or 100kA may work better.

Licensing

PCBs purchased from madbeanpedals (or etched from the artwork provided) for the Boneyard are intended for DIY / non-commercial use only. If you are a commercial pedal builder or “work for hire”, please do not use madbeanpedals materials for your product offerings. Similarly, madbeanpedals PCBs are prohibited from commercial re-distribution including “kits”.

www.madbeanpedals.com
BUILD.SHARE.LEARN
UPDATE: 08.29.2012

A few builders have reported issues with squealing on high-gain/crunch settings. The following modifications seems to have solved the problem:

Change R5 to 100R and C5 to 1uF.

If you are still experiencing a problem try this: remove R4 and place it on the underside of the PCB as depicted in the diagram below. Having R4 next to R1 was a poor design choice on my part (and was a result of a last minute design change I made). Moving away from R1 should prevent any further oscillation issues.

You can also do this modification at the outset, if you are just starting the Boneyard project.

![Diagram of PCB](image-url)