

X Type: **OVERDRIVE**Build Level: Intermediate
Based On: Nobels® ODR-1™

Last Updated: April 24, 2024 9:05 AM

© 2024 madbeanpedals

Overview

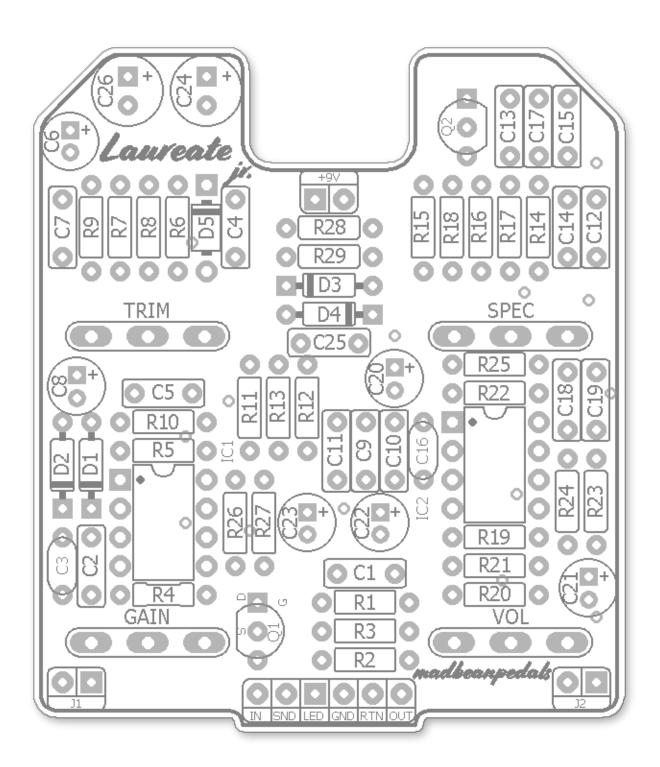
The first Laureate was released a few years ago as a stand-alone "Pro Series" project. It was designed for the 125B enclosure and included soft touch switching. In order to move it to the 1590B Standard Series it was necessary to revert back to standard mechanical switching. Having built the ODR-C, I also decided to include its bass control feature which is superior to the one I used in the original Laureate project.

This is an excellent overdrive, mixing soft and hard clipping, a unique gyrator-based tone control and offers plenty of texture and personality to a guitar tone. The ODR-1 has long been a staple of session guitarists. Give it a try!

Controls

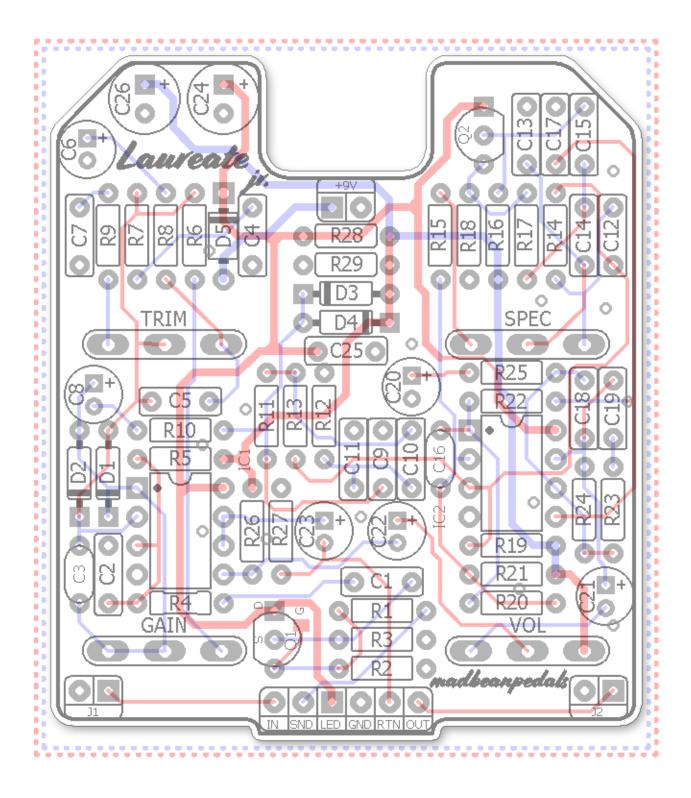
- VOL: Total effect output.
- GAIN: Total gain, from mild to medium overdrive.
- **SPEC:** Tone control (called Spectrum on the ODR-1). The tone control circuitry features an active mid boost with low pass cut when set CCW. This control is quite unique in the world of overdrives. Recognizable bones, but unusual.
- **TRIM:** This control reduces the massive amount of low end in the circuit. It is the same control used in the newer ODR-C version.

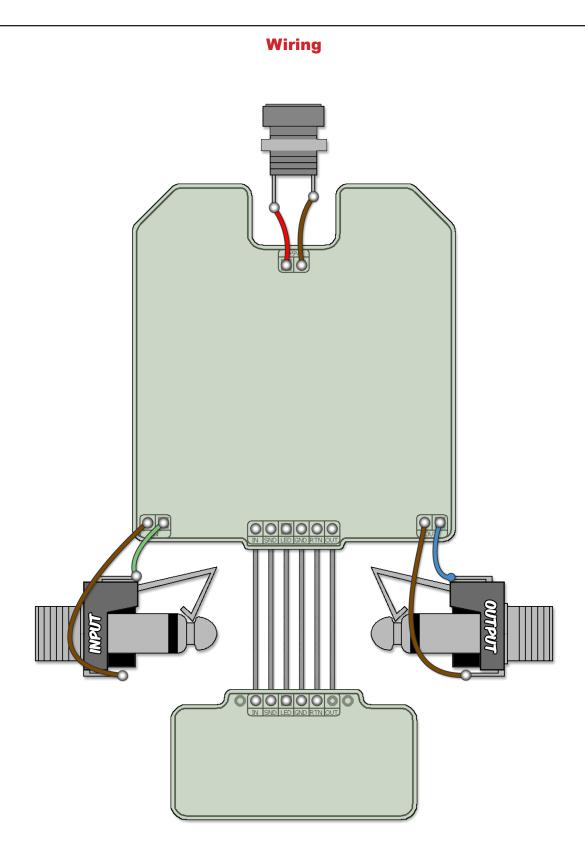
Further study:


https://nordland-electronics.de/en/blog/odr-1.html https://nordland-electronics.de/en/products/odr-c.html https://www.youtube.com/watch?v=yHudK6_B0c4

Terms of Use: You are free to use purchased LaureateJR circuit boards for both DIY and small commercial operations. You may not offer LaureateJR PCBs for resale or as part of a "kit" in a commercial fashion. Peer to peer re-sale is fine, though.

Technical assistance for is available via the <u>madbeanpedals forum</u>. Please go there rather than emailing me for personal assistance. This is because (1) I'm not always available to respond via email in a timely and continuous manner, and (2) posting technical problems and solutions in the forum creates a record from which other members may benefit.


All copyrights and registered trademarks are property of their original owners. Any mention of trademarked or intellectual properties in this documents is purely for comparative purposes.


Parts Layout

Component Values 872 872 aureate 5817 15k 15k 1n914 25kB 25kB n914 3 3 2 1 2 1 100n 1k2 2nz 220n 4k7 417 82n 12k 2n7 827 4558 10k 4558 43k 10k 68n 2nz + 2k7 20k 33k 250kA 50kA Sn5457 3k3 1 1M nadbeanpedak S S IN SND LED GND RTN OUT

Trace Layout

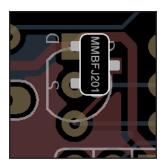
Unless otherwise noted, all Standard Series projects have the same wiring regardless of which 3PDT bypass board is used. A 6-pin, 2" ribbon cable is recommended for soldering the connections between the two PCBs.

B.O.M.

Resi	istors	Ca	aps	Dic	odes
R1	33k	C1	68n	D1	1n914
R2	1M	C2	22n	D2	1n914
R3	3k3	C3	120pF	D3	1n914
R4	2k7	C4	82n	D4	1n914
R5	10k	C5	220n	D5	1n5817
R6	1k8	C6	2u2	Trans	sistors
R7	820R	C7	220n	Q1	2n5457
R8	1k5	C8	2u2	Q2	2N5088
R9	2k2	C9	2n7		С
R10	12k	C10	82n	IC1	4558
R11	39k	C11	1n	IC2	4558
R12	12k	C12	22n	Pots	
R13	10k	C13	27n	SPEC	25kB
R14	5k1	C14	100n	TRIM	25kB
R15	1k2	C15	8n2	VOL	50kA
R16	150k	C16	560pF	GAIN	250kA
R17	2k2	C17	8n2		
R18	3k3	C18	4n7		
R19	43k	C19	82n		
R20	20k	C20	1uF		
R21	10k	C21	2u2		
R22	4k7	C22	1uF		
R23	5k1	C23	2u2		
R24	22k	C24	100uF		
R25	1k2	C25	100n		
R26	150k	C26	100uF		
R27	150k				
R28	15k				
R29	15k				

Shopping List

			phhilia F
Value	QTY	Type	Rating
820R	1	Carbon / Metal Film	1/4W
1k2	2	Carbon / Metal Film	1/4W
1k5	1	Carbon / Metal Film	1/4W
1k8	1	Carbon / Metal Film	1/4W
2k2	2	Carbon / Metal Film	1/4W
2k7	1	Carbon / Metal Film	1/4W
3k3	2	Carbon / Metal Film	1/4W
4k7	1	Carbon / Metal Film	1/4W
5k1	2	Carbon / Metal Film	1/4W
10k	3	Carbon / Metal Film	1/4W
12k	2	Carbon / Metal Film	1/4W
15k	2	Carbon / Metal Film	1/4W
20k	1	Carbon / Metal Film	1/4W
22k	1	Carbon / Metal Film	1/4W
33k	1	Carbon / Metal Film	1/4W
39k	1	Carbon / Metal Film	1/4W
43k	1	Carbon / Metal Film	1/4W
150k	3	Carbon / Metal Film	1/4W
1M	1	Carbon / Metal Film	1/4W
120pF	1	Ceramic / MLCC	16v min.
560pF	1	Ceramic / MLCC	16v min.
1n	1	Film	16v min.
2n7	1	Film	16v min.
4n7	1	Film	16v min.
8n2	2	Film	16v min.
22n	2	Film	16v min.
27n	1	Film	16v min.
68n	1	Film	16v min.
82n	3	Film	16v min.
100n	2	Film	16v min.
220n	2	Film	16v min.
1uF	2	Electrolytic	16v min.
2u2	4	Electrolytic	16v min.
100uF	2	Electrolytic	16v min.
1n914	4		
1n5817	1		
2n5457	1	SMT or Through-Hole	
2N5088	1	ŭ	
4558	2		
25kB	2	PCB Right Angle	16mm
50kA	1	PCB Right Angle 16mm	
250kA	1	PCB Right Angle	16mm
	•	. == 1	


Additional Hardware

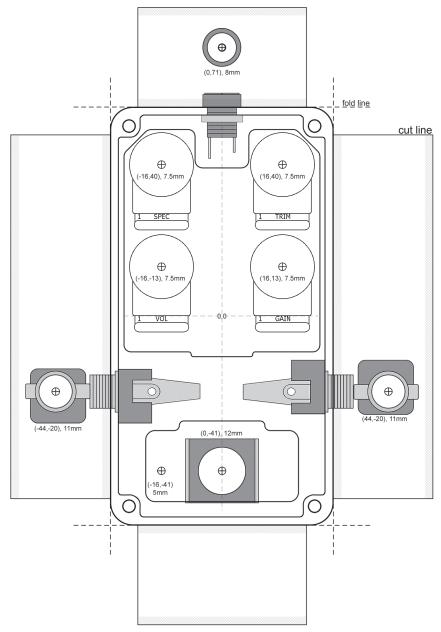
- (1) 1590B enclosure(2) Lumberg 1/4" Compact mono jacks(1) Slim 2.1mm DC jack(1) Standard 3PDT footswitch

- (1) 5mm LED

Build Notes

• For Q1 you have the option of either a through-hole or a surface mount device. Rather than using two separate parts, they are combined into one so the surface mount version takes advantage of the two through-hole pads. This works out great and is actually easier to solder than a fully surface mount part. You can use the MMBFJ201 or MMBF5457. NOTE: some manufacturers may have the opposite pinout for the Source and Drain pins on surface mount devices. Doesn't matter - they can be used interchangeably in this application.

Circuit Voltages

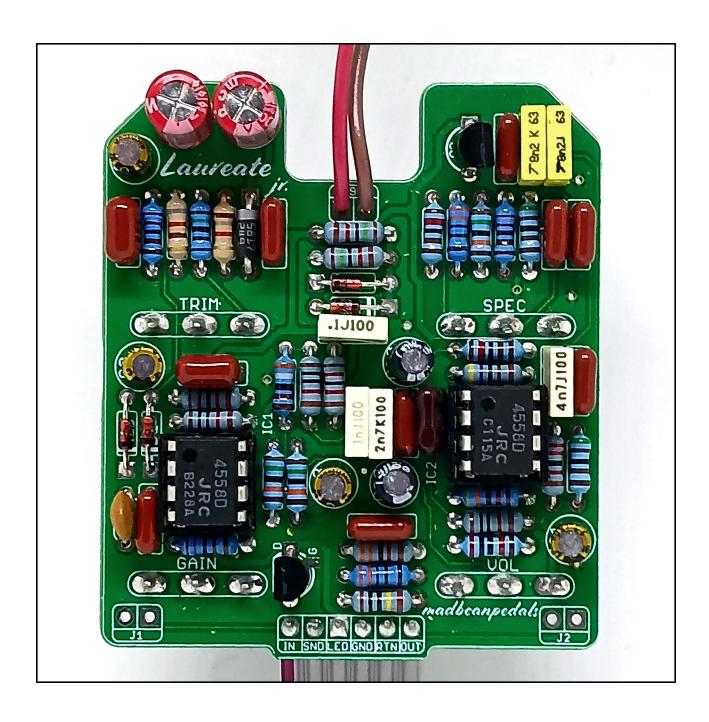

IC1	4558	IC2	4558	Q1	2n5457
1	4.60	1	4.60	D	9.24
2	4.60	2	4.60	S	555mV
3	4.59	3	4.57	G	0
4	0.00	4	0.00		
5	4.54	5	4.60	Q2	2n5088
6	4.60	6	4.60	С	9.24
7	4.60	7	4.61	В	4.21
8	9.24	8	9.24	Ε	3.65

9.44vDC One Spot supply Current Draw: ~10mA Knobs @ 50%

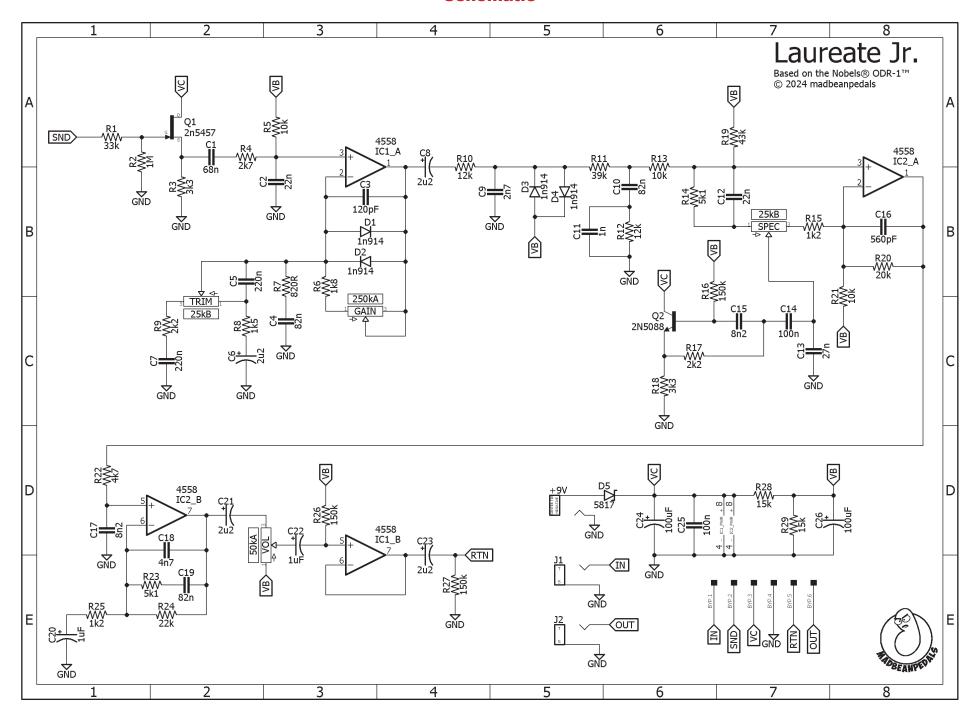
1590B Drill Template

Coordinates are denoted in (X,Y), drill size format starting from the center (0,0) location of the enclosure. If you are drilling your own enclosure, use the closest sized drill bit using imperial measurements.

Link to Tayda Standard Series master drill template



Hardware


1590B enclosure 16mm pots Lumberg 1/4" Compact mono jacks Slim 2.1mm DC jack Standard 3PDT footswitch 5mm LED

NOTE: Different 1/4" and DC jack styles may require different sized drill holes.

Build Pic

Schematic

